Abstract

Aging-induced degradation imposes a major challenge to the designer when estimating timing guardbands. This problem increases as traditional worst-case corners bring over-pessimism to designers, exacerbating competitive and close-to-the-edge designs. In this work, we present an accurate machine learning approach for aging-aware cell library characterization, enabling the designer to evaluate their circuit under the impact of precisely selected degradation. Unlike state of the art, we bring cell library characterization to the designer, empowering their capability in exploring the impact of aging while protecting confidential information from the foundry at the same time. Furthermore, the fast inference of cell libraries makes it feasible, for the first time, to examine aging-induced variability analysis in a Monte-Carlo fashion. Finally, we show that the designer is able to select a less pessimistic timing guardband by choosing adequate delta threshold voltage ( ΔV <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">th</sub> ) for their design and their needs. Our machine learning approach reaches an R <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> score of $>99\%$ for almost all data stored in the cell library. Only timing constraints show slightly less accuracy with an R <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> score around 95%. When using ML-characterized libraries in static timing analysis, we achieve errors smaller than ±0.5% and ±0.1% for path delay and dynamic power, respectively. Errors in leakage power are negligible and even smaller by orders of magnitude. Our machine learning implementation for standard cell library characterization is publicly available. Download: https://opensource.mlcad.org

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.