Abstract
Predicting the amount of combustion generated nano-scale particulate matter (PM) emitted by gasoline direct injection (GDI) is a challenging task, but immensely useful for engine calibration engineers in order to meet the stringent emission legislation norms. The present work aimed to link the in-cylinder combustion with engine-out nano-scale PM for the size range of 23.7–1000nm diameter. Neural network with a single hidden layer using first 8 principal components of cylinder pressure was employed for training and predicting the number of nano-scale PM number count. Using a systematic computational approach and comparing its results with experimental data this work demonstrates that machine-learning approach based on neural network is sufficient for predicting engine out nano-scale PM count as a function of engine load and speed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.