Abstract

Stellar images will deteriorate dramatically when the sensitive elements of wide-field survey telescopes are misaligned during an observation, and active alignment is the key technology to maintain the high resolution of wide-field sky survey telescopes. Instead of traditional active alignment based on field-dependent wave front errors, this work proposes a machine learning alignment metrology based on stellar images of the scientific camera, which is more convenient and higher speed. We first theoretically confirm that the pattern of the point-spread function over the field is closely related to the misalignment status, and then the relationships are learned by two-step neural networks. After two-step active alignment, the position errors of misalignment parameters are less than 5 μm for decenter and less than 5″ for tip-tilt in more than 90% of the cases. The precise alignment results indicate that this metrology provides a low-cost and high-speed solution to maintain the image quality of wide-field sky survey telescopes during observation, thus implying important significance and broad application prospects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.