Abstract
Prior works on the trajectory outlier detection problem solely consider individual outliers. However, in real-world scenarios, trajectory outliers can often appear in groups, e.g., a group of bikes that deviates to the usual trajectory due to the maintenance of streets in the context of intelligent transportation. The current paper considers the Group Trajectory Outlier (GTO) problem and proposes three algorithms. The first and the second algorithms are extensions of the well-known DBSCAN and k NN algorithms, while the third one models the GTO problem as a feature selection problem. Furthermore, two different enhancements for the proposed algorithms are proposed. The first one is based on ensemble learning and computational intelligence, which allows for merging algorithms’ outputs to possibly improve the final result. The second is a general high-performance computing framework that deals with big trajectory databases, which we used for a GPU-based implementation. Experimental results on different real trajectory databases show the scalability of the proposed approaches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ACM Transactions on Management Information Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.