Abstract

Biogas production through anaerobic digestion (AD) is one of the complex non-linear biological processes, wherein understanding its dynamics plays a crucial role towards process control and optimization. In this work, a machine learning based biogas predictive model was developed for high solid systems using algorithms, including SVM, ET, DT, GPR, and KNN and two different datasets (Dataset-1:10, Dataset-2:5 inputs). Support Vector Machine had the highest accuracy (R2) of all the algorithms at 91 % (Dataset-1) and 87 % (Dataset-2), respectively. The statistical analysis showed that there was no significant difference (p = 0.377) across the datasets, wherein with less inputs, accurate results could be predicted. In case of biogas yield, the critical factors which affect the model predictions include loading rate and retention time. The developed high solid machine learning model shows the possibility of integrating Artificial Intelligence to optimize and control AD process, thus contributing to a generic model for enhancing the overall performance of the biogas plant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.