Abstract
Landslides are a major natural hazard that can significantly damage infrastructure and cause loss of life. In South Korea, the current landslide susceptibility mapping (LSM) approach is mainly based on statistical techniques (logistic regression (LR) analysis). According to previous studies, this method has achieved an accuracy of approximately 75.2%. In this paper, we expand upon this traditional approach by comparing the performance of six machine learning (ML) algorithms for LSM in Inje County, South Korea. The study employed a combination of geographical data gathered from 2005 to 2019 to train and evaluate six algorithms, including LR, Gaussian Naive Bayes (GNB), Support Vector Machine (SVM), K-Nearest Neighbors (KNN), Random Forest (RF), and Extreme Gradient Boosting (XGB). The effectiveness of these models was measured by various criteria, such as the percentage of correct classification (PCC) score, F1 score, and Kappa score. The results demonstrated that the PCC and F1 scores of the six models fell between [0.869–0.941] and [0.857–0.940], respectively. RF and XGB had the highest PCC and F1 scores of 0.939 and 0.941, respectively. This study indicates that ML can be a valuable technique for high-resolution LSM in South Korea instead of the current approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.