Abstract

The detection of gravitational waves with ground-based laser-interferometric detectors requires sensitivity to changes in distance much smaller than the diameter of atomic nuclei. Though sophisticated machinery and techniques have been developed over the past few decades to isolate such instruments from non-astrophysical noise, the detectors are still susceptible to instrumental and environmental noise transients known as “glitches,” which hinder searches for transient gravitational waves. The Gravity Spy project is an effort to comprehensively classify the glitches that afflict gravitational wave detectors into morphological families by combining the strengths of machine learning algorithms and citizen scientists.This paper presents the initial Gravity Spy dataset used for citizen scientist and machine learning classification – a static, accessible, documented dataset for testing machine learning supervised classification. Previous versions of this dataset used in [8, 53] did not include all current classes and also for some of the classes, some samples were pruned and added. This set consists of time–frequency images of LIGO glitches and their associated metadata. These glitches are organized by time–frequency morphology into 22 classes for which descriptions and representative images are presented. Results from the application of state-of-the-art supervised classification methods to this dataset are presented in order to provide baselines for future glitch classification work. Standard splitting for training, validation, and testing sets are also presented to facilitate the comparison between different machine learning methods. The baseline methods are selected from both traditional and more recent deep learning approaches. An ensemble framework is developed that demonstrates that combining various classifiers can yield a more accurate model for classification. The ensemble classifier, trained with the standard training set, achieves 98.21% accuracy on the standard test set.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.