Abstract

In several applications concerning underground flow simulations in fractured media, the fractured rock matrix is modeled by means of the Discrete Fracture Network (DFN) model. The fractures are typically described through stochastic parameters sampled from known distributions. In this framework, it is worth considering the application of suitable complexity reduction techniques, also in view of possible uncertainty quantification analyses or other applications requiring a fast approximation of the flow through the network. Herein, we propose the application of Neural Networks to flux regression problems in a DFN characterized by stochastic trasmissivities as an approach to predict fluxes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.