Abstract
Lung cancer is the leading cause of cancer death in the U.S. Therefore, it is imperative to identify novel biomarkers for the early detection and progression of lung cancer. PRMT6 is associated with poor lung cancer prognosis. However, analyzing PRMT6 expression manually in large samples is time-consuming posing a significant limitation for processing this biomarker. To overcome this issue, we trained and validated an automated method for scoring PRMT6 in lung cancer tissues, which can then be used as the standard method in future larger cohorts to explore population-level associations between PRMT6 expression and sociodemographic/clinicopathologic characteristics. We evaluated the ability of a trained artificial intelligence (AI) algorithm to reproduce the PRMT6 immunoreactive scores obtained by pathologists. Our findings showed that tissue segmentation to cancer vs. non-cancer tissues was the most critical parameter, which required training and adjustment of the algorithm to prevent scoring non-cancer tissues or ignoring relevant cancer cells. The trained algorithm showed a high concordance with pathologists with a correlation coefficient of 0.88. The inter-rater agreement was significant, with an intraclass correlation of 0.95 and a scale reliability coefficient of 0.96. In conclusion, we successfully optimized a machine learning algorithm for scoring PRMT6 expression in lung cancer that matches the degree of accuracy of scoring by pathologists.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.