Abstract

Extraordinary electronic performance and unique structural characteristic of black phosphorene (BP) often is used as electrode modified materials in electrochemical sensors. In this paper, a machine learning (ML) strategy for phosphorene nanozyme sensor and its the intelligent of clenbuterol (CLB) in pork and pig serum samples is prepared. The silver nanoparticles decorate BP to prevent oxidative degradation of BP surface and further hybridize with multi-walled carbon nanotubes (MWCNTs) composites containing nafion (Nf) treated with isopropanol (IP) to improve environmental stability and electrocatalytic capacity of BP. Back-propagation artificial neural network (BP-ANN) model combined with genetic algorithm (GA) is employed to optimize sensor parameters such as BP concentrations, MWCNTs concentrations and ratio of VNf:VIP, and compared with orthogonal experimental design (OED). Least square support vector machine, radial basis function and extreme learning machine are implemented to establish quantitative analysis model for CLB. The results showed that the CLB response current of BP sensor by BP-ANN-GA was improved 9.02% over OED method. Compared with the traditional linear regression, three models displayed better predictive performance, and LS-SVM was the best with the R 2 , RMSE and MAE and RPD of 0.9977, 0.0303, 0.0225, and 18.74, respectively. The average recoveries of CLB in pork and pig serum was 98.66% ∼ 101.67%, and its relative standard deviations was 0.19% ∼ 0.84%, indicating that electrochemical sensor using machine learning for intelligent analysis of CLB in animal-derived agro-products products was both feasible and practical.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call