Abstract
Data quality is the cornerstone of any emissions trading system (ETS), although developing an effective assurance mechanism is a considerable challenge. To evaluate potential data quality issues of regulated firms and develop a cost-efficient data verification scheme for the authorities, this study uses domain knowledge and data-driven approaches to identify firms with high data quality risks. Using a unique dataset from China's national ETS, each sample obtains an ensemble outlier score generated by several supervised and unsupervised machine learning techniques, and limited inspection resources are allocated to the facilities with higher scores. Our results show that the models make good predictions where potential misreports are found among the predicted high-risk samples, and 70 % of tampered datapoints are detected in the robust test. The method presented here helps in efficiently verifying firms’ self-report emissions and proposes a feasible solution for intelligent data quality management under ETS context.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.