Abstract

PurposeThe purpose of this research is to compare several machine learning techniques on the task of Asian language text classification, such as Chinese and Japanese where no word boundary information is available in written text. The paper advocates a simple language modeling based approach for this task.Design/methodology/approachNaïve Bayes, maximum entropy model, support vector machines, and language modeling approaches were implemented and were applied to Chinese and Japanese text classification. To investigate the influence of word segmentation, different word segmentation approaches were investigated and applied to Chinese text. A segmentation‐based approach was compared with the non‐segmentation‐based approach.FindingsThere were two findings: the experiments show that statistical language modeling can significantly outperform standard techniques, given the same set of features; and it was found that classification with word level features normally yields improved classification performance, but that classification performance is not monotonically related to segmentation accuracy. In particular, classification performance may initially improve with increased segmentation accuracy, but eventually classification performance stops improving, and can in fact even decrease, after a certain level of segmentation accuracy.Practical implicationsApply the findings to real web text classification is ongoing work.Originality/valueThe paper is very relevant to Chinese and Japanese information processing, e.g. webpage classification, web search.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.