Abstract
Aortic Stenosis (AS) is a prevalent and potentially life-threatening cardiovascular condition that requires accurate diagnosis for optimal management. Traditional diagnostic methods, while effective, face limitations in terms of precision, timely detection, and clinician workload. The emergence of Machine Learning (ML) offers an innovative solution to these challenges, enhancing diagnostic accuracy and improving patient outcomes. This article explores how ML algorithms can be utilized to refine AS diagnosis, particularly through medical imaging and predictive modeling. In addition, the integration of ML in health information systems must be coupled with robust data security measures to protect sensitive patient information. We discuss the intersection of machine learning and healthcare IT security, focusing on innovative methods for safeguarding health data while improving diagnostic efficiency. The paper examines various ML techniques applied to AS, evaluates their impact on clinical workflows, and identifies the security protocols necessary to ensure compliance with privacy regulations. Finally, the study presents the potential challenges and future directions for integrating ML and health information security in clinical practice.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.