Abstract

Post-calculation analyses are often required to extract physical insights from ab initio molecular dynamics simulations. In the present work, we use different machine learning classifiers to take a new perspective on the decomposition reaction of dioxetane. Upon thermally activated decomposition, dioxetane can form products in an electronically excited state and can thus chemiluminesce. Simulated dynamics trajectories exhibit both successful and frustrated dissociations. As an exhaustive and systematic study of the decomposition mechanism “by hand” is beyond feasibility, machine learning models have been employed to study the relevant nuclear distortions governing molecular dissociation. According to all classifiers used in the study, the two sets of geometries differ by the in-phase planarisation of the two formaldehyde moieties. New insights are obtained from this analysis: if both moieties are not planar enough when the dissociation is attempted, it is frustrated and the molecule remains trapped. The postponing of the decomposition reaction by the so-called entropic trap enhances the chemiexcitation efficiency.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.