Abstract

Actionable Warning Identification (AWI) plays a crucial role in improving the usability of static code analyzers. With recent advances in Machine Learning (ML), various approaches have been proposed to incorporate ML techniques into AWI. These ML-based AWI approaches, benefiting from ML’s strong ability to learn subtle and previously unseen patterns from historical data, have demonstrated superior performance. However, a comprehensive overview of these approaches is missing, which could hinder researchers and practitioners from understanding the current process and discovering potential for future improvement in the ML-based AWI community. In this paper, we systematically review the state-of-the-art ML-based AWI approaches. First, we employ a meticulous survey methodology and gather 51 primary studies from 2000/01/01 to 2023/09/01. Then, we outline a typical ML-based AWI workflow, including warning dataset preparation, preprocessing, AWI model construction, and evaluation stages. In such a workflow, we categorize ML-based AWI approaches based on the warning output format. Besides, we analyze the key techniques used in each stage, along with their strengths, weaknesses, and distribution. Finally, we provide practical research directions for future ML-based AWI approaches, focusing on aspects like data improvement (e.g., enhancing the warning labeling strategy) and model exploration (e.g., exploring large language models for AWI).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.