Abstract

Abstract The quantification of storm updrafts remains unavailable for operational forecasting despite their inherent importance to convection and its associated severe weather hazards. Updraft proxies, like overshooting top area from satellite images, have been linked to severe weather hazards but only relate to a limited portion of the total storm updraft. This study investigates if a machine learning model, namely, U-Nets, can skillfully retrieve maximum vertical velocity and its areal extent from three-dimensional gridded radar reflectivity alone. The machine learning model is trained using simulated radar reflectivity and vertical velocity from the National Severe Storm Laboratory’s convection permitting Warn-on-Forecast System (WoFS). A parametric regression technique using the sinh–arcsinh–normal distribution is adapted to run with U-Nets, allowing for both deterministic and probabilistic predictions of maximum vertical velocity. The best models after hyperparameter search provided less than 50% root mean squared error, a coefficient of determination greater than 0.65, and an intersection over union (IoU) of more than 0.45 on the independent test set composed of WoFS data. Beyond the WoFS analysis, a case study was conducted using real radar data and corresponding dual-Doppler analyses of vertical velocity within a supercell. The U-Net consistently underestimates the dual-Doppler updraft speed estimates by 50%. Meanwhile, the area of the 5 and 10 m s−1 updraft cores shows an IoU of 0.25. While the above statistics are not exceptional, the machine learning model enables quick distillation of 3D radar data that is related to the maximum vertical velocity, which could be useful in assessing a storm’s severe potential. Significance Statement All convective storm hazards (tornadoes, hail, heavy rain, straight line winds) can be related to a storm’s updraft. Yet, there is no direct measurement of updraft speed or area available for forecasters to make their warning decisions from. This paper addresses the lack of observational data by providing a machine learning solution that skillfully estimates the maximum updraft speed within storms from only the radar reflectivity 3D structure. After further vetting the machine learning solutions on additional real-world examples, the estimated storm updrafts will hopefully provide forecasters with an added tool to help diagnose a storm’s hazard potential more accurately.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call