Abstract
In healthcare machine learning is used mainly for disease diagnosis or acute condition detection based on patient data analysis. In the proposed work diabetic patient dataset analysis is done for hypoglycemia detection which means the lowering of blood glucose level. Often in healthcare it is observed that the dataset is imbalanced. Therefore an Ensemble Approach using imbalanced dataset techniques Synthetic Minority Over-sampling Technique and Adaptive Synthetic oversampling methods with different evaluation methods like train-test, k-fold, Stratified K-Fold and repeat train-test were used. This ensemble approach was implemented on diabetic dataset using K-Nearest Neighbor, Support Vector Machine, Random Forest, Naïve Bayes and Logistic Regression classifiers with average Stacking-C method thereafter to conclude. Comparative analysis was done using three different considerations. The results showed that KNN and Random forest gives more stable metric values both on balanced and imbalanced dataset. The confusion matrix consideration concluded that KNN and Random Forest were found to be better with least false negative and maximum true positive count. But if average train and test time is taken into consideration then Naïve Bayes and Random forest had least average train-test time. Thus the three different considerations concluded that the proposed ensemble approach gives better clarity for different classifier implementation using machine learning.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Indonesian Journal of Electrical Engineering and Computer Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.