Abstract
Forecasting returns in financial markets is notoriously challenging due to the resemblance of price changes to white noise. In this paper, we propose novel methods to address this challenge. Employing high-frequency Brazilian stock market data at one-minute granularity over a full year, we apply various statistical and machine learning algorithms, including ARIMA, Bidirectional Long Short-Term Memory (BiLSTM) with attention, Transformers, N-BEATS, N-HiTS, Convolutional Neural Networks (CNNs), and Temporal Convolutional Networks (TCNs) to predict changes in the price ratio of closely related stock pairs. Our findings indicate that a combination of reversion and machine learning-based forecasting methods yields the highest profit-per-trade. Additionally, by allowing the model to abstain from trading when the predicted magnitude of change is small, profits per trade can be further increased. Our proposed forecasting approach, utilizing a blend of methods, demonstrates superior accuracy compared to individual methods for high-frequency data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.