Abstract

In the present study, copper matrix composites were successfully produced through the powder metallurgy route by applying the electrical resistance sintering technique. Copper composites were reinforced with 5 wt. % TiC and different concentrations of GNP (0.1, 0.2, and 0.3 wt. %). Microstructural investigations confirmed uniform dispersion of TiC and GNP micro and nanoparticles in the copper matrix. A sintering temperature of 900 °C resulted in better densification and hardness of the prepared composites. Moreover, ML models were developed to predict the sintered density, hardness, and wear loss of the composites. Further, it was found that Multi-Layer Perceptron outperforms all other ML models with R2 values of 0.975, 0.934, and 0.948 in the prediction of density, hardness, and wear loss of the composites. On the other hand, RSM shows predicted R2 values of 0.8012, 0.8507, and 0.8756.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call