Abstract

Compressed Sensing (CS) is a Machine Learning (ML) method, which can be regarded as a single-layer unsupervised learning method. It mainly emphasizes the sparsity of the model. In this paper, we study an ML-based CS Channel Estimation (CE) method for wireless communications, which plays an important role in Industrial Internet of Things (IIoT) applications. For the sparse correlation between channels in Multiple Input Multiple Output Filter Bank MultiCarrier with Offset Quadrature Amplitude Modulation (MIMO-FBMC/OQAM) systems, a Distributed Compressed Sensing (DCS)-based CE approach is studied. A distributed sparse adaptive weak selection threshold method is proposed for CE. Firstly, the correlation between MIMO channels is utilized to represent a joint sparse model, and CE is transformed into a joint sparse signal reconstruction problem. Then, the number of correlation atoms for inner product operation is optimized by weak selection threshold, and sparse signal reconstruction is realized by sparse adaptation. The experiment results show that the proposed DCS-based method not only estimates the multipath channel components accurately but also achieves higher CE performance than classical Orthogonal Matching Pursuit (OMP) method and other traditional DCS methods in the time-frequency dual selective channels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.