Abstract

In this paper, multiple machine learning-enabled solutions are adopted to tackle the challenges of complex sensing model in cooperative spectrum sensing for non-orthogonal multiple access transmission mechanism, including unsupervised learning algorithms (K-Means clustering and Gaussian mixture model) as well as supervised learning algorithms (directed acyclic graph-support vector machine, K-nearest-neighbor and back-propagation neural network). In these solutions, multiple secondary users (SUs) collaborate to perceive the presence of primary users (PUs), and the state of each PU need to be detected precisely. Furthermore, the sensing accuracy is analyzed in detail from the aspects of the number of SUs, the training data volume, the average signal-to-noise ratio of receivers, the ratio of PUs' power coefficients, as well as the training time and test time. Numerical results illustrate the effectiveness of our proposed solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.