Abstract

The rapid advancement of machine learning (ML) technology across diverse domains has provided a framework for discovering and rationalising materials and photovoltaic devices. This study introduces a five-step methodology for implementing ML models in fabricating hole transport layer (HTL) free carbon-based PSCs (C-PSC). Our approach leverages various prevalent ML models, and we curated a comprehensive dataset of 700 data points using SCAPS-1D simulation, encompassing variations in the thickness of the electron transport layer (ETL) and perovskite layers, along with bandgap characteristics. Our results indicate that the ANN-based ML model exhibits superior predictive accuracy for C-PSC device parameters, achieving a low root mean square error (RMSE) of 0.028 and a high R-squared value of 0.954. The novelty of this work lies in its systematic use of ML to streamline the optimisation process, reducing the reliance on traditional trial-and-error methods and providing a deeper understanding of the interdependence of key device parameters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.