Abstract

To enhance the efficiency of vaccine manufacturing, this study focuses on optimizing the microfluidic conditions and lipid mix ratios of messenger RNA-lipid nanoparticles (mRNA-LNP). Different mRNA-LNP formulations (n = 24) were developed using an I-optimal design, where machine learning tools (XGBoost/Bayesian optimization and self-validated ensemble (SVEM)) were used to optimize the process and predict lipid mix ratio. The investigation included material attributes, their respective ratios, and process attributes. The critical responses like particle size (PS), polydispersity index (PDI), Zeta potential, pKa, heat trend cycle, encapsulation efficiency (EE), recovery ratio, and encapsulated mRNA were evaluated. Overall prediction of SVEM (> 97%) was comparably better than that of XGBoost/Bayesian optimization (> 94%). Moreover, in actual experimental outcomes, SVEM prediction is close to the actual data as confirmed by the experimental PS (94∼96 nm) is close to the predicted one (95∼97 nm). The other parameters including PDI and EE were also close to the actual experimental data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.