Abstract

In recent years, the field of microplastic (MP) research has evolved significantly; however, the lack of a standardized detection methodology has led to incomparability across studies. Addressing this gap, our current study innovates a reliable MP detection system that synergizes sample processing, machine learning, and optical photothermal infrared (O-PTIR) spectroscopy. This approach includes examining high-temperature filtration and alcohol treatment for reducing non-MP particles and utilizing a support vector machine (SVM) classifier focused on key wavenumbers that could discriminate between nylon MPs and non-nylon MPs (1077, 1541, 1635, 1711 cm−1 were selected based on the feature importance of SVM-Full wavenumber model) for enhanced MP identification. The SVM model built from key wavenumbers demonstrates a high accuracy rate of 91.33%. Results show that alcohol treatment is effective in minimizing non-MP particles, while filtration at 70 °C has limited impact. Additionally, this method was applied to assess MPs released from commercial nylon teabags, revealing an average release of 106 particles per teabag. This research integrates machine learning with O-PTIR spectroscopy, paving the way for potential standardization in MP detection methodologies and providing vital insights into their environmental and health implications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.