Abstract

Machine learning (ML) has enabled ground-breaking advances in the healthcare and pharmaceutical sectors, from improvements in cancer diagnosis, to the identification of novel drugs and drug targets as well as protein structure prediction. Drug formulation is an essential stage in the discovery and development of new medicines. Through the design of drug formulations, pharmaceutical scientists can engineer important properties of new medicines, such as improved bioavailability and targeted delivery. The traditional approach to drug formulation development relies on iterative trial-and-error, requiring a large number of resource-intensive and time-consuming in vitro and in vivo experiments. This review introduces the basic concepts of ML-directed workflows and discusses how these tools can be used to aid in the development of various types of drug formulations. ML-directed drug formulation development offers unparalleled opportunities to fast-track development efforts, uncover new materials, innovative formulations, and generate new knowledge in drug formulation science. The review also highlights the latest artificial intelligence (AI) technologies, such as generative models, Bayesian deep learning, reinforcement learning, and self-driving laboratories, which have been gaining momentum in drug discovery and chemistry and have potential in drug formulation development.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.