Abstract

To introduce local binary pattern (LBP) texture analysis to cartilage osteoarthritis (OA) research and compare the performance of different classification systems in discrimination of OA subjects from healthy controls using gray-level co-occurrence matrix (GLCM) and LBP texture data. Classification algorithms were used to reduce the dimensionality of texture data into a likelihood of subject belonging to the reference class. T2 relaxation time mapping with multi-slice multi-echo spin echo sequence was performed for eighty symptomatic OA patients and 63 asymptomatic controls on a 3T clinical MRI scanner. Relaxation time maps were subjected to GLCM and LBP texture analysis, and classification algorithms were deployed with an in-house developed software. Implemented algorithms were K nearest neighbors, support vector machine, and neural network classifier. LBP and GLCM discerned OA patients from controls with a significant difference in all studied regions. Classification models comprising GLCM and LBP showed high accuracy in classing OA patients and controls. The best performance was obtained with a multilayer perceptron type classifier with an overall accuracy of 90.2 %. LBP texture analysis complements prior results with GLCM, and together LBP and GLCM serve as significant input data for classification algorithms trained for OA assessment. Presented algorithms are adaptable to versatile OA evaluations also for future gradational or predictive approaches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.