Abstract
The various types of social media were increased rapidly, as people’s need to share knowledge between others. In fact, there are various types of social media apps and platforms such as Facebook, Twitter, Reddit, Instagram, and others. Twitter remains one of the most popular social application that people use for sharing their emotional states. However, this has increased particularly during the COVID-19 pandemic. In this paper, we proposed a chatbot for evaluating the sentiment analysis by using machine learning algorithms. The authors used a dataset of tweets from Kaggle’s website, and that includes 41157 tweets that are related to the COVID-19. These tweets were classified and labelled to four categories: Extremely positive, positive, neutral, negative, and extremely negative. In this study, we applied Machine Learning algorithms, Support Vector Machines (SVM), and the Naïve Bayes (NB) algorithms and accordingly, we compared the accuracy between them. In addition to that, the classifiers were evaluated and compared after changing the test split ratio. The result shows that the accuracy performance of SVM algorithm is better than Naïve Bayes algorithm, even though Naïve Bayes perform poorly with low accuracy, but it trained the data faster comparing to SVM.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.