Abstract

Automatic welding equipment has replaced human welders in the nuclear industry for safety issues and uniform and high welding quality. However, automatic welding equipment cannot predict porosity defects. So, the weldment must be inspected by non-destructive testing. This inspection was a costly and time-consuming process, and it applies to each weldment even if it welded same material. To improve the welding efficiency, a weld porosity detection system of the same weld material with different material thicknesses was needed. This paper proposed a machine-learned porosity detection system for 3.0 mm plates with welding arc sound data from the pulsed gas tungsten arc welding (P-GTAW) process of 1.6 mm plates. Ensemble-Empirical Mode Decomposition (EEMD) was used to divide the arc sound signal according to the pulse period of P-GTAW. Fast Fourier transform (FFT) was used to convert the arc sound into frequencies for features extraction according to porosity. The validity of these weld frequency features was confirmed through k-fold cross-validation across various machine learning techniques, with evaluation of F-1 scores against experimental weld sounds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.