Abstract
This abstract underscores the importance of weed detection in crop cultivation to prevent plant diseases and minimize crop losses. To address these challenges and promote eco-friendly practices, the authors propose a weed detection program employing K-Nearest Neighbors, Random Forest, Decision Tree algorithms, and the YOLOv5 neural network. The abstract also provides a concise overview of existing research in weed identification using machine learning and deep learning. The authors developed a YOLOv5-based weed detection system and evaluated the performance of the algorithm, showing traditional classifiers achieve accuracies of 83.3%, 87.5%, and 80%, while the neural network scores range from 0.82 to 0.92 for each class. The study demonstrates the effectiveness of this approach in classifying low-resolution weed images.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Applied and Advanced Multidisciplinary Research
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.