Abstract

Additive manufacturing (AM) is a widely used layer-by-layer manufacturing process. Material extrusion (ME) is one of the most popular AM techniques. Lately, low-cost metal material extrusion (LCMME) technology is developed to perform metal ME to produce metallic parts with the ME technology. This technique is used to fabricate metallic parts after sintering the metal infused additively manufactured parts. Both AM and sintering process parameters will affect the quality of the final parts. It is evident that the sintered parts do not have the same mechanical properties as the pure metal parts fabricated by the traditional manufacturing processes. In this research, several machine learning algorithms are used to predict the size of the internal voids of the final parts based on the collected data. Additionally, the results show that the neural network (NN) is more accurate than the support vector regression (SVR) on prediction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.