Abstract
In response to the limited effectiveness of existing weight loss food products, we sought to apply machine learning-based virtual screening methods to identify potential anti-obesity functional compounds from medicinal and edible plants and validate their in vitro activities. Firstly, we construct and evaluate the machine learning (ML) screening models using Multilayer Perceptron (MLP) and Random Forest (RF) algorithms. The receiver operating characteristic (ROC) curve demonstrates the high accuracy of MLP and RF models in screening for obese-related targets PL (pancreatic lipase) and AMPK (Adenosine 5′-monophosphate activated protein kinase). Subsequently, the tested ML models are employed to screen the constructed database, and Gypenoside LXVI (GYP) and alisol-b-23-acetate (ALI) are identified as compounds exhibiting favorable activity against both targets. The hit compounds are tested for their impact on lipase activity and lipid accumulation. The test results show that GYP and ALI have favorable inhibitory effects on pancreatic lipase (PL), with IC50 of 359.7 and 433.8 μg/mL. Furthermore, both GYP and ALI significantly reduced cellular lipid accumulation by 72.89% and 79.01% with the concentration increase to 40 μg/mL. The molecular docking results indicate that GYP and ALI can interact with several amino acid residues on the two target proteins, thereby affecting the activity of the target proteins. In conclusion, GYP and ALI can prevent and alleviate obesity by inhibiting PL activity and regulating AMPK signaling factors. We innovatively applied virtual screening based on ML to discover functional factors in food for anti-obesity purposes. This novel computational screening technique holds significant potential in the development of dietary supplements to combat obesity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.