Abstract

The world’s largest and densest tsunami observing system gives us the leverage to develop a method for a real-time tsunami inundation prediction based on machine learning. Our method utilizes 150 offshore stations encompassing the Japan Trench to simultaneously predict tsunami inundation at seven coastal cities stretching ~100 km along the southern Sanriku coast. We trained the model using 3093 hypothetical tsunami scenarios from the megathrust (Mw 8.0–9.1) and nearby outer-rise (Mw 7.0–8.7) earthquakes. Then, the model was tested against 480 unseen scenarios and three near-field historical tsunami events. The proposed machine learning-based model can achieve comparable accuracy to the physics-based model with ~99% computational cost reduction, thus facilitates a rapid prediction and an efficient uncertainty quantification. Additionally, the direct use of offshore observations can increase the forecast lead time and eliminate the uncertainties typically associated with a tsunami source estimate required by the conventional modeling approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.