Abstract
Within the realm of machine learning, kernel methods stand out as a prominent class of algorithms with widespread applications, including but not limited to classification, regression, and identification tasks. Our paper addresses the challenging problem of identifying the finite impulse response (FIR) of single-input single-output nonlinear systems under the influence of perturbations and binary-valued measurements. To overcome this challenge, we exploit two algorithms that leverage the framework of reproducing kernel Hilbert spaces (RKHS) to accurately identify the impulse response of the Proakis C channel. Additionally, we introduce the application of these kernel methods for estimating binary output data of nonlinear systems. We showcase the effectiveness of kernel adaptive filters in identifying nonlinear systems with binary output measurements, as demonstrated through the experimental results presented in this study.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Telecommunications and Information Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.