Abstract
The global population is projected to increase by an additional two billion by 2050, as per the assessment conducted by Food and Agriculture Management. However, the arable land is anticipated to expand by just 5%. Consequently, intelligent and effective agricultural practices are essential to enhancing farming production. Evaluating rural Land Suitability (LS) is a crucial instrument for agricultural growth. Numerous novel methods and concepts are being adopted in agriculture as alternatives for gathering and processing farm data. The swift advancement of wireless Sensor Networks (WSN) has prompted the creation of economical and compact sensor gadgets, with the Internet of Things (IoT) serving as a viable instrument for automation and decision-making in farmers. To evaluate agricultural LS, this study offers an expert system integrating networked sensors with Machine Learning (ML) technologies, including neural networks. The suggested approach would assist farmers in evaluating agricultural land for cultivating across four decision categories: very appropriate, suitable, somewhat suitable, and inappropriate. This evaluation is based on the data gathered from various sensor devices for system training. The findings achieved with the MLP with four concealed layers demonstrate efficacy for the multiclass categorization method compared to other current models. This trained system will assess future evaluations and categorize the land post-cultivation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.