Abstract

Accurate, faster, and on-the-fly analysis of the molecular dynamics (MD) simulations trajectory becomes very critical during the discovery of new materials or while developing force-field parameters due to automated nature of these processes. Here to overcome the drawbacks of algorithm based analysis approaches, we have developed and utilized an approach that integrates machine-learning (ML) based stacked ensemble model (SEM) with MD simulations, for the first time. As a proof-of-concept, two SEMs were developed to analyze two dynamical properties of a water droplet, its contact angle, and hydrogen bonds. The two SEMs consisted of two layered networks of random forest, artificial neural network, support vector regression, Kernel ridge regression, and k-nearest neighbors ML models. The root-mean-square error values, uncertainty quantification, and sensitivity analysis of both the SEMs suggested that the final result was more accurate as compared to that of the individual ML models. This new computational framework is very general, robust, and has a huge potential in analyzing large size MD simulation trajectories as it can capture critical information very accurately.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.