Abstract
The growing interest in renewable energy and the falling prices of solar panels place solar electricity in a favourable position for adoption. However, the high-rate adoption of intermittent renewable energy introduces challenges and the potential to create power instability between the available power generation and the load demand. Hence, accurate solar Photovoltaic (PV) power forecasting is essential to maintain system reliability and maximize renewable energy integration. The current solar PV power forecasting approaches are an essential tool to maintain system reliability and maximize renewable energy integration. This paper presents a comprehensive and comparative review of existing Machine Learning (ML) based approaches used in PV power forecasting, focusing on short-term horizons. We provide an overview of factors affecting solar PV power forecasting and an overview of existing PV power forecasting methods in the literature, with a specific focus on ML-based models. To further enhance the comparison and provide more insights into the advancement in the area, we simulate the performance of different ML methods used in solar PV power forecasting and, finally, a discussion on the results of the work.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.