Abstract

SummaryTask scheduling is a critical problem in the cloud computing environment since it has a significant impact on the system's performance. Security and robust based task allocation model improves the security of real‐time solicitations whereas preserving a high‐level performance of the data center. Here, to minimize the makespan in task allocation existing research proposed a bio‐inspired algorithm in a multi‐cloud environment, but, it needs more memory to update velocity and increases the processing time. Therefore, this research proposed a Machine Learning based Secure and Efficient Task Allocation in Multi‐Cloud Environment. First, the proposed model has a task classifier module that categorizes the matching it to the appropriate VM type for the task that was submitted. The next is the task allocation module, in which, an Intellectual Gravitational Search‐Genetic Algorithm is suggested to allocate the task to a VM. The tasks are distributed to the VMs in the order specified after the allocating phase in which they will be executed. Finally, to secure the task allocation in multi‐cloud, this research proposed a Naïve Bayes module to detect the attacks. The models and experimental findings demonstrate that our proposed approach produces a shorter makespan, lower cost, improved resource utilization, and better trade‐off between time and economic cost. It is more dependable and effective in multi‐cloud environment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.