Abstract
The contact and interaction of human is considered to be one of the important factors affecting the epidemic transmission, and it is critical to model the heterogeneity of individual activities in epidemiological risk assessment. In digital society, massive data makes it possible to implement this idea on large scale. Here, we use the mobile phone signaling to track the users’ trajectories and construct contact network to describe the topology of daily contact between individuals dynamically. We show the spatiotemporal contact features of about 7.5 million mobile phone users during the outbreak of COVID-19 in Shanghai, China. Furthermore, the individual feature matrix extracted from contact network enables us to carry out the extreme event learning and predict the regional transmission risk, which can be further decomposed into the risk due to the inflow of people from epidemic hot zones and the risk due to people close contacts within the observing area. This method is much more flexible and adaptive, and can be taken as one of the epidemic precautions before the large-scale outbreak with high efficiency and low cost.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.