Abstract
The digital era has created an extreme choice paradigm with an explosion of endless content. A user who is just starting on the platform or looking for a creature can be lost in this ocean. Therefore, it is necessary to design a system that can guide users as per their interest. To overcome this problem, the Recommendation System (RS) came into existence. RS is a tool used to recommend items as per user’s interests. The benefits of the RS cannot be exaggerated, given the potential impact to improve many of the problems associated with widespread use and over-selection in many web applications. In recent years, Machine learning (ML) shows great interest in different research areas, such as computer vision and Natural Language Processing (NLP), not only because of its stellar performance but also because of its attractive feature of demonstrating learning from scratch. The effect of ML techniques can be seen while applying these techniques to the prediction and recommender system. This paper presented a comprehensive survey on recommendation techniques used in conjunction with the ML approach in many domains. This work aims to find the shortcoming of available RS for different fields and the areas that require more effort to attain higher accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.