Abstract
Daylight analysis is essential in building design to ensure indoor environment quality, including health and thermal comfort vis-à-vis energy. It is a repeating and time-consuming process of design options. Several studies conducted machine learning models to accurately predict daylight performance in particular design situations. Therefore, developing an AI-based real-time daylight analysis platform becomes more promising. However, buildings can be designed with arbitrary shapes, creating a real challenge for the AI to recognize any building layout. From that perspective, the idea of finding the design variables that characterize all the building layouts becomes the key solution. To unlock this challenge, we promote a novel method of creating design variables and building a machine learning model that can efficiently forecast daylight performance with different building layouts. The daylight metric was Useful Daylight Illuminance with four ranges, and the case studies were assumed medium-sized buildings located in Ho Chi Minh City, Vietnam. All the data for training and predicting were created by the simulation DIVA tool. Obtained results showed the excellent performance of the proposed approach, which brings more promising in developing a data-driven machine learning platform for real-time daylight validation. Moreover, the present framework can adapt to any specific machine learning model or daylight simulation tool and daylight metrics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.