Abstract

Rail corrugation is a common problemin metro lines, and its efficient recognition is always an issue worth studying. To recognize the wavelength and amplitude of rail corrugation, a particle probabilistic neural network (PPNN) algorithm is developed. The PPNN is incorporated with the particle swarm optimization algorithm and the probabilistic neural network. On the basis ofthe above, the in-vehicle noise characteristics measured in the field are used to recognize normal rail wavelengths of 30 and 50 mm. A stepwise moving window search algorithm suitable for selecting features with a fixed order was developed to select in-vehicle noise features. Sound pressure levels at 400, 500, 630 and 800 Hz of in-vehicle noise are fed into the PPNN, and the average accuracy can reach 96.43%. The bogie acceleration characteristics calculated by the multi-body dynamics simulation model are used to recognize normal rail amplitudes of 0.1 and 0.2 mm. The bogie acceleration is decomposed by the complete ensemble empirical mode decomposition with adaptive noise, and a reconstructional signal is obtained. The energy entropy of the reconstructional signal is fed into the PPNN, and the average accuracy can reach 95.40%. This article is part of the theme issue 'Artificial intelligence in failure analysis of transportation infrastructure and materials'.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.