Abstract
BackgroundDespite increasing utilization and survival benefit over the last decade, extracorporeal membrane oxygenation (ECMO) remains resource-intensive with significant complications and rehospitalization risk. We thus utilized machine learning (ML) to develop prediction models for 90-day nonelective readmission following ECMO. MethodsAll adult patients receiving ECMO who survived index hospitalization were tabulated from the 2016–2020 Nationwide Readmissions Database. Extreme Gradient Boosting (XGBoost) models were developed to identify features associated with readmission following ECMO. Area under the receiver operating characteristic (AUROC), mean Average Precision (mAP), and the Brier score were calculated to estimate model performance relative to logistic regression (LR). Shapley Additive Explanation summary (SHAP) plots evaluated the relative impact of each factor on the model. An additional sensitivity analysis solely included patient comorbidities and indication for ECMO as potential model covariates. ResultsOf ∼22,947 patients, 4495 (19.6 %) were readmitted nonelectively within 90 days. The XGBoost model exhibited superior discrimination (AUROC 0.64 vs 0.49), classification accuracy (mAP 0.30 vs 0.20) and calibration (Brier score 0.154 vs 0.165, all P < 0.001) in predicting readmission compared to LR. SHAP plots identified duration of index hospitalization, undergoing heart/lung transplantation, and Medicare insurance to be associated with increased odds of readmission. Upon sub-analysis, XGBoost demonstrated superior disclination compared to LR (AUROC 0.61 vs 0.60, P < 0.05). Chronic liver disease and frailty were linked with increased odds of nonelective readmission. ConclusionsML outperformed LR in predicting readmission following ECMO. Future work is needed to identify other factors linked with readmission and further optimize post-ECMO care among this cohort.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.