Abstract

A support vector regression model for predictions of the thermoelectric power factor of half-Heusler phases was implemented based on elemental features of ions. The training subset was composed of 53 hH phases with 18 valence electrons. The target values were calculated within the density functional theory and Boltzmann equation. The best predictors out of over 2000 combinations regarded for the p-type power factor at room temperature are: electronegativity, the first ionization energy, and the valence electron count of constituent ions. The final results of support vector regression for 70 hH phases are compared with data available in the literature, revealing good ability to determine favorable thermoelectric materials, i.e., VRhGe, TaRhGe, VRuSb, NbRuAs, NbRuBi, LuNiAs, LuNiBi, TaFeBi, YNiAs, YNiBi, TaRuSb and NbFeSb. The results and discussion presented in this work should encourage further fusion of ab initio investigations and machine learning support, in which the elemental features of ions may be a sufficient input for reasonable predictions of intermetallics with promising thermoelectric performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.