Abstract

In this article, we consider machine learning algorithms to accurately predict two variables associated with the Q-voter model in complex networks, i.e. (i) the consensus time and (ii) the frequency of opinion changes. Leveraging nine topological measures of the underlying networks, we verify that the clustering coefficient (C) and information centrality emerge as the most important predictors for these outcomes. Notably, the machine learning algorithms demonstrate accuracy across three distinct initialization methods of the Q-voter model, including random selection and the involvement of high- and low-degree agents with positive opinions. By unraveling the intricate interplay between network structure and dynamics, this research sheds light on the underlying mechanisms responsible for polarization effects and other dynamic patterns in social systems. Adopting a holistic approach that comprehends the complexity of network systems, this study offers insights into the intricate dynamics associated with polarization effects and paves the way for investigating the structure and dynamics of complex systems through modern methods of machine learning.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.