Abstract

Objective While linear regression and LASSO models have been established for predicting in-hospital mortality, there is currently no validated clinical prediction algorithm to predict in-hospital mortality for patients with chronic obstructive pulmonary disease (COPD) exacerbations using machine learning. Thus, we will evaluate the BAP-65 and CURB-65, and construct a novel prediction model using the random forest (RF) technique. Methods A dataset of 1,418 patients with COPD exacerbations was collected. Age, gender, mental status, vital signs, and laboratory results were all taken into account for predictors. The categorical outcome variable was hospital-based mortality of people over 65 years. The dataset was divided randomly into a training dataset (70%) and a testing dataset (30%). We trained three prediction models, BAP-65, CURB-65, and the RF model, estimated the area under the receiver operating characteristic curve (AUROC) for the entire dataset. We also conducted a comparison of the AUROC values using the Delong test. Results A total of 658 individuals with COPD acute exacerbations were enrolled. Our analysis using the receiver operating characteristic curve demonstrated that the RF model exhibited excellent performance, with an AUROC of 0.80 (95% confidence interval: 0.75-0.84). In comparison, the BAP-65 prediction model yielded an AUROC of 0.72 (0.68-0.75), while the CURB-65 prediction model achieved an AUROC of 0.69 (0.67-0.73). Conclusions The RF model demonstrated superior predictive capabilities than the BAP-65 and CURB-65 models in predicting in-hospital mortality. The results further highlighted significant factors for predicting in-hospital mortality, including blood eosinophil count, systolic blood pressure, and prior history of asthma.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call