Abstract

In this paper, a machine-learning-based method is proposed for predicting the x-ray absorption near-edge structure (XANES) for local configurations specific to amorphous materials. A combination of molecular dynamics and first-principles XANES simulations was adopted. The XANES spectrum was assumed to be accurately represented by linear regression of the local atomic descriptors. A comprehensive prediction of Si $K$-edge XANES spectra was performed based on an atom-centered symmetry function, smooth overlap of atomic positions, local many-body tensor representation, and spectral neighbor analysis potential. Furthermore, prediction accuracy was improved by compression of XANES spectral data and efficient sampling of training data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call