Abstract
In this paper, a machine-learning-based method is proposed for predicting the x-ray absorption near-edge structure (XANES) for local configurations specific to amorphous materials. A combination of molecular dynamics and first-principles XANES simulations was adopted. The XANES spectrum was assumed to be accurately represented by linear regression of the local atomic descriptors. A comprehensive prediction of Si $K$-edge XANES spectra was performed based on an atom-centered symmetry function, smooth overlap of atomic positions, local many-body tensor representation, and spectral neighbor analysis potential. Furthermore, prediction accuracy was improved by compression of XANES spectral data and efficient sampling of training data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.