Abstract
This study aimed to develop machine learning (ML) prediction models for identifying bloodstream infection (BSI) and septic shock (SS) in pediatric patients with cancer who presenting febrile neutropenia (FN) at emergency department (ED) visit. A retrospective study was conducted on patients, aged younger than 18 years, who visited a tertiary university-affiliated hospital ED due to FN between January 2004 and August 2022. ML models, based on XGBoost, were developed for BSI and SS prediction. After applying the exclusion criteria, we identified 4423 FN events during the study period. We identified 195 (4.4%) BSI and 107 (2.4%) SS events. The BSI and SS models demonstrated promising performance, with area under the receiver operating characteristic curve values of 0.87 and 0.88, respectively, which were superior to those of the logistic regression models. Clinical features, including body temperature, some laboratory results, vital signs, and diagnosis of acute myeloblastic leukemia were identified as significant predictors. The ML-based prediction models, which use data obtainable at ED visits may be valuable tools for ED physicians to predict BSI or SS.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.