Abstract

Papillary thyroid carcinoma (PTC) is the most common type of thyroid cancer and belongs to the category of malignant tumors of the thyroid gland. Autophagy plays an important role in PTC. The purpose of this study is to develop a novel diagnostic model using autophagy-related genes (ARGs) in patients. In this study, RNA sequencing data of PTC samples and normal samples were obtained from GSE33630 and GSE29265. Then, we analyzed GSE33630 datasets and identified 127 DE-ARGs. Functional enrichment analysis suggested that 127 DE-ARGs were mainly enriched in pathways in cancer, protein processing in endoplasmic reticulum, toll-like receptor pathway, MAPK pathway, apoptosis, neurotrophin signaling pathway, and regulation of autophagy. Subsequently, CALCOCO2, DAPK1, and RAC1 among the 127 DE-ARGs were identified as diagnostic genes by support vector machine recursive feature elimination and least absolute shrinkage and selection operator algorithms. Then, we developed a novel diagnostic model using CALCOCO2, DAPK1, and RAC1 and its diagnostic value was confirmed in GSE29265 and our cohorts. Importantly, CALCOCO2 may be a critical regulator involved in immune microenvironment because its expression was related to many types of immune cells. Overall, we developed a novel diagnostic model using CALCOCO2, DAPK1, and RAC1 which can be used as diagnostic markers of PTC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call