Abstract

To investigate the value of non-contrast CT (NCCT)-based two-dimensional (2D) radiomics features in predicting haematoma expansion (HE) after spontaneous intracerebral haemorrhage (ICH) and compare its predictive ability with the three-dimensional (3D) signature. Three hundred and seven ICH patients who received baseline NCCT within 6 h of ictus from two stroke centres were analysed retrospectively. 2D and 3D radiomics features were extracted in the manner of one-to-one correspondence. The 2D and 3D models were generated by four different machine-learning algorithms (regularised L1 logistic regression, decision tree, support vector machine and AdaBoost), and the receiver operating characteristic (ROC) curve was used to compare their predictive performance. A robustness analysis was performed according to baseline haematoma volume. Each feature type of 2D and 3D modalities used for subsequent analyses had excellent consistency (mean ICC >0.9). Among the different machine-learning algorithms, pairwise comparison showed no significant difference in both the training (mean area under the ROC curve [AUC] 0.858 versus 0.802, all p>0.05) and validation datasets (mean AUC 0.725 versus 0.678, all p>0.05), and the 10-fold cross-validation evaluation yielded similar results. The AUCs of the 2D and 3D models were comparable either in the binary or tertile volume analysis (all p>0.5). NCCT-derived 2D radiomics features exhibited acceptable and similar performance to the 3D features in predicting HE, and this comparability seemed unaffected by initial haematoma volume. The 2D signature may be preferred in future HE-related radiomic works given its compatibility with emergency condition of ICH.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call