Abstract
AbstractThe exponential rise of electric vehicles (EVs) is transforming the global automobile industry, driving a shift towards greater cleanliness and environmental sustainability. EV charging stations (EVCSs) play a pivotal role in this massive transition towards EVs, where accurate forecasting of EVCS demand is crucial for seamlessly integrating EVs into existing power grids. Most of the existing research mainly concentrates on univariate forecasting, neglecting the multiple factors influencing EVCS demand. Hence, this study offers a comparative analysis of different algorithms for univariate forecasting and multivariate forecasting, where the multivariate scheme incorporates metadata such as charging time, greenhouse gas savings, and gasoline savings. The experimental results indicate the superiority of the multivariate scheme over the univariate forecasting. For multivariate forecasting, the gated recurrent unit (GRU) has outperformed other models such as categorical boosting (Catboost), recurrent neural network (RNN), long short‐term memory (LSTM), extreme gradient boosting (XGBoost), random forest, convolutional neural network (CNN), CNN + LSTM, and LSTM + LSTM. The results of this study emphasize the significance of using the GRU model for multivariate forecasting with metadata during normal and noisy scenarios to yield more reliable and accurate predictions. This approach enhances decision‐making, policy development, and efficient grid integration in the growing EV sector.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.